Kohei OMORI Yosuke TANIGAWA Hideki TODE
This paper addresses power saving for STAs (Wireless Stations) in WLANs (Wireless LANs). Mobile devices are increasingly used in situations in which they access WLANs. However, mobile devices consume large amounts of power when they communicate through a WLAN, and this shortens their battery lifetime. IEEE 802.11 specifies PSM (Power-Saving Mode) as the power-saving method for standard WLANs. However, the sleep conditions specified by PSM for STAs are not optimal in terms of power saving, except when the number of STAs is small, and this increases packet transfer delay. In this paper, we propose a power-saving method in which STAs reduce power consumption by sleeping for a period specified by the NAV (Network Allocation Vector) duration, which is set by an RTS/CTS handshake, and the duration of the NAV is extended by bidirectional burst transmission. To suppress the transfer delay caused by the bidirectional burst transmission, an AP (Access Point) manages the transmission deadline of each downlink packet on the basis of its acceptable value of delay and adapts the number of packets transferred in the bidirectional burst transmission. Although another existing method also uses the NAV duration to manage STA sleeping, the bidirectional burst transmission can only be initiated by the STAs themselves and the NAV is of an extremely limited duration. On the other hand, the proposed method specifies generalized bidirectional burst transmission without the limitations of the transmission initiator and the burst length within acceptable packet transfer delay. Moreover, we investigate the combination of the proposed method with PSM in order to improve the performance in situations in which the number of STAs is small by taking advantage of the combined properties of PSM and the proposed method. The evaluation results demonstrate that these proposed methods can reduce the power consumption of wireless stations and suppress packet transfer delay.
Ryoma ANDO Ryo HAMAMOTO Hiroyasu OBATA Chisa TAKANO Kenji ISHIDA
In IEEE802.11 Wireless Local Area Networks (WLANs), frame collisions occur drastically when the number of wireless terminals connecting to the same Access Point (AP) increases. It causes the decrease of the total throughput of all terminals. To solve this issue, the authors have proposed a new media access control (MAC) method, Synchronized Phase MAC (SP-MAC), based on the synchronization phenomena of coupled oscillators. We have addressed the network environment in which only uplink flows from the wireless terminal to an AP exist. However, it is necessary to take into consideration of the real network environment in which uplink and downlink flows are generated simultaneously. If many bidirectional data flows exist in the WLAN, the AP receives many frames from both uplink and downlink by collision avoidance of SP-MAC. As a result, the total throughput decreases by buffer overflow in the AP. In this paper, we propose a priority control method based on SP-MAC for avoiding the buffer overflow in the AP under the bidirectional environment. Also, we show that the proposed method has an effect for improving buffer overflow in the AP and total throughput by the simulation.
Keishi KOSAKA Hiroshi TOYAO Eiji HANKUI
A novel compact multi-input multi-output (MIMO) antenna system with split-ring resonator (SRR), a popular metamaterial structure, is presented. The MIMO antenna system consists of SRRs as radiator elements arranged close to each other on a printed circuit board. We evaluate the antenna characteristics with a single and two SRR elements arranged within various sizes of area. We also analyze MIMO channel capacities of SRR elements by using radiation patterns. The obtained results confirm that the proposed MIMO antenna system can achieve the same channel capacity as a conventional MIMO antenna system but with a 30% smaller footprint area and is very suitable for compact wireless equipment in next-generation wireless systems.
Ryo HAMAMOTO Chisa TAKANO Hiroyasu OBATA Kenji ISHIDA
Wireless Local Area Networks (WLANs) based on the IEEE 802.11 standard have been increasingly used. Access Points (APs) are being established in various public places, such as railway stations and airports, as well as private residences. Moreover, the rate of public WLAN services continues to increase. Throughput prediction of an AP in a multi-rate environment, i.e., predicting the amount of receipt data (including retransmission packets at an AP), is an important issue for wireless network design. Moreover, it is important to solve AP placement and selection problems. To realize the throughput prediction, we have proposed an AP throughput prediction method that considers terminal distribution. We compared the predicted throughput of the proposed method with a method that uses linear order computation and confirmed the performance of the proposed method, not by a network simulator but by the numerical computation. However, it is necessary to consider the impact of CSMA/CA in the MAC layer, because throughput is greatly influenced by frame collision. In this paper, we derive an effective transmission rate considering CSMA/CA and frame collision. We then compare the throughput obtained using the network simulator NS2 with a prediction value calculated by the proposed method. Simulation results show that the maximum relative error of the proposed method is approximately 6% and 15% for UDP and TCP, respectively, while that is approximately 17% and 21% in existing method.
Katsunori ISHIMIYA Chi-Yuk CHIU Zhinong YING Jun-ichi TAKADA
A compact multiple-input multiple-output (MIMO) dielectric resonator antenna (DRA) was proposed and studied. The DRA consists of three antenna ports. The antennas operate at 2.4GHz, where one of the antenna ports was placed at the center and resonates in the monopole mode, and the two other ports were located at the sides and resonate in the TEy111 mode. Both simulation and measurements were carried out, and reasonably good agreement was obtained. In addition, a study for miniaturization with different permittivities for the DRA and a comparison of the throughput with the reference antennas of a commercial wireless LAN router were performed. Our proposed MIMO DRA gave similar performance as that of the reference antennas but was more compact in size.
This paper investigates the impact of hidden nodes (HNs) on on-demand access point (AP) wake-up that is employed to realize energy-efficient wireless LANs (WLANs). The considered wake-up signaling exploits IEEE 802.11 signals transmitted by a WLAN station (STA) to remotely activate a sleeping AP: a STA with communication demands transmits a series of WLAN frames with their length corresponding to the wake-up ID. A wake-up receiver attached to each AP detects the length of WLAN frames with the low-power operations of envelope detection and on-off-keying (OOK) demodulation. Since WLAN frames constituting a wake-up signal are transmitted by a STA following carrier sense multiple access (CSMA) protocol, they are vulnerable to the well-known hidden node (HN) problem. The impact of HNs on wake-up signaling is different from that on data communications since the wake-up receiver employs unconventional frame length detection to extract the information on the wake-up ID from the received signal. In this paper, we first investigate the impact of HNs on wake-up failure probability with theoretical and experimental evaluations. If the degradation of wake-up signalling due to HNs is observed for a STA, the corresponding STA may suffer from collisions due to the same HNs for its data communications even if it manages to succeed in the wake-up process. In this case, the wake-up operation itself may not be necessary. Therefore, we also compare the impact of HNs on wake-up signaling and that on data communications after the wake-up process. These results and discussions provide us with an insight on the impact of HNs on on-demand AP wake-up exploiting WLAN signals.
Kazuto YANO Mariko SEKIGUCHI Tomohiro MIYASAKA Takashi YAMAMOTO Hirotsugu YAMAMOTO Yoshizo TANAKA Yoji OKADA Masayuki ARIYOSHI Tomoaki KUMAGAI
We have proposed a quality of experience (QoE)-oriented wireless local area network (WLAN) to provide sufficient QoE to important application flows. Unlike ordinary IEEE 802.11 WLAN, the proposed QoE-oriented WLAN dynamically performs admission control with the aid of the prediction of a “loadable capacity” criterion. This paper proposes an algorithm for dynamic network reconfiguration by centralized control among multiple basic service sets (BSSs) of the QoE-oriented WLAN, in order to maximize the number of traffic flows whose QoE requirements can be satisfied. With the proposed dynamic reconfiguration mechanism, stations (STAs) can change access point (AP) to connect. The operating frequency channel of a BSS also can be changed. These controls are performed according to the current channel occupancy rate of each BSS and the required radio resources to satisfy the QoE requirement of the traffic flow that is not allowed to transmit its data by the admission control. The effectiveness of the proposed dynamic network reconfiguration is evaluated through indoor experiments with assuming two cases. One is a 14-node experiment with QoE-oriented WLAN only, and the other is a 50-node experiment where the ordinary IEEE 802.11 WLAN and the QoE-oriented WLAN coexist. The experiment confirms that the QoE-oriented WLAN can significantly increase the number of traffic flows that satisfy their QoE requirements, total utility of network, and QoE-satisfied throughput, which is the system throughput contributing to satisfy the QoE requirement of traffic flows. It is also revealed that the QoE-oriented WLAN can protect the traffic flows in the ordinary WLAN if the border of the loadable capacity is properly set even in the environment where the hidden terminal problem occurs.
Analog and digital collaborative design techniques for wireless SoCs are reviewed in this paper. In wireless SoCs, delicate analog performance such as sensitivity of the receiver is easily degraded due to interferences from digital circuit blocks. On the other hand, an analog performance such as distortion is strongly compensated by digital assist techniques with low power consumption. In this paper, a sensitivity recovery technique using the analog and digital collaborative design, and digital assist techniques to achieve low-power and high-performance analog circuits are presented. Such analog and digital collaborative design is indispensable for wireless SoCs.
Tetsuya MANABE Takaaki HASEGAWA
This paper presents a design methodology for positioning sub-platform from the viewpoint of positioning for smartphone-based location-based services (LBS). To achieve this, we analyze a mechanism of positioning error generation including principles of positioning sub-systems and structure of smartphones. Specifically, we carry out the experiments of smartphone positioning performance evaluation by the smartphone basic API (Application Programming Interface) and by the wireless LAN in various environments. Then, we describe the importance of considering three layers as follows: 1) the lower layer that caused by positioning sub-systems, e.g., GPS, wireless LAN, mobile base stations, and so on; 2) the middle layer that caused by functions provided from the platform such as Android and iOS; 3) the upper layer that caused by operation algorithm of applications on the platform.
Shiori YOSHIOKA Yosuke TANIGAWA Hideki TODE
This paper deals with the inefficient channel utilization of wireless LANs that use rate adaptation. Recently, wireless LANs are being utilized in various environments. However, inefficient channel utilization is still a serious problem. The effective solutions include to decrease the frequency of packet loss and to transmit packets at a higher rate. While the backoff algorithm in IEEE 802.11 avoids only the packet loss caused by collision, other previous works tackle the packet loss caused by channel fading by means of transmission at a lower rate. This approach is called rate adaptation and a simple rate adaptation scheme is widely diffused in commercial 802.11 wireless LAN devices. However, utilizing lower transmission rate degrades transmission efficiency because the channel is occupied for a longer time. In this paper, decreasing transmission rate is avoided with novel transmission scheduling. Specifically, the proposed scheduling interrupts packet transmission to receiver stations under fading channel condition until the condition improves. Instead, other packets to other stations are transmitted in advance. To implement this proposed scheduling, only access points (APs) need to be modified. Hence, legacy wireless stations can benefit from higher communication bandwidth simply by introducing the modified APs. Moreover, although wireless stations must also be modified, an extended RTS/CTS handshake is also proposed to quickly detect the improvement of channel condition and to minimize the wasted time even if fading loss occurs. Here, wireless stations must also be modified to adopt the extended RTS/CTS handshake but further bandwidth increase is achievable. Evaluation results demonstrate that network throughput is improved without degrading the throughput fairness among receiver stations and packet transfer delay of interrupted stations.
Hiroyasu OBATA Ryo HAMAMOTO Chisa TAKANO Kenji ISHIDA
Wireless local area networks (LANs) based on the IEEE802.11 standard usually use carrier sense multiple access with collision avoidance (CSMA/CA) for media access control. However, in CSMA/CA, if the number of wireless terminals increases, the back-off time derived by the initial contention window (CW) tends to conflict among wireless terminals. Consequently, a data frame collision often occurs, which sometimes causes the degradation of the total throughput in the transport layer protocols. In this study, to improve the total throughput, we propose a new media access control method, SP-MAC, which is based on the synchronization phenomena of coupled oscillators. Moreover, this study shows that SP-MAC drastically decreases the data frame collision probability and improves the total throughput when compared with the original CSMA/CA method.
Riichi KUDO B. A. Hirantha Sithira ABEYSEKERA Yusuke ASAI Takeo ICHIKAWA Yasushi TAKATORI Masato MIZOGUCHI
Combining heterogeneous wireless networks that cross licensed and unlicensed spectra is a promising way of supporting the surge in mobile traffic. The unlicensed band is mostly used by wireless LAN (WLAN) nodes which employ carrier sense multiple access/collision avoidance (CSMA/CA). Since the number of WLAN devices and their traffic are increasing, the wireless resource of the unlicensed band is expected be more depleted in 2020s. In such a wireless environment, the throughput could be extremely low and unstable due to the hidden terminal problem and exposed terminal problem despite of the large resources of the allocated frequency band and high peak PHY rate. In this paper, we propose user equipment (UE) centric access in the unlicensed band, with support by licensed band access in the mobile network. The proposed access enables robust downlink transmission from the access point (AP) to the UEs by mitigating the hidden terminal problem. The licensed spectrum access passes information on the user data waiting at the AP to the UEs and triggers UE reception opportunity (RXOP) acquisition. Furthermore, the adaptive use of UE centric downlink access is presented by using the channel utilization measured at the AP. Computer simulations confirm that licensed access assistance enhances the robustness of the unlicensed band access against the hidden terminal problem.
Shota YAMASHITA Norikatsu IMOTO Takuya ICHIHARA Koji YAMAMOTO Takayuki NISHIO Masahiro MORIKURA Naoki SHINOHARA
In this paper, we study the feasibility of a batteryless wireless sensor supplied with energy by using microwave power transmission (MPT). If we perform co-channel operation of MPT and wireless local area networks (WLANs) for the sake of spectral efficiency, a time division method for MPT and WLAN communications is required to avoid serious interference from MPT to WLAN data transmissions. In addition, to reduce the power consumption of a sensor, the use of power-save operation of the sensor is desirable. We proposed a scheduling scheme that allocates time for MPT and WLAN communications. Specifically, in the proposed scheduling system, an energy source transmits microwave power to a sensor station except when the sensor station transmits data frames or receives beacon frames. In addition, in the proposed scheduling system, we force the remaining energy of the sensor station to converge to a maximum value by adjusting the time interval of data transmission from the sensor station such that the power consumption of the sensor station is reduced. On the basis of the proposition, we implemented a scheduling system and then confirmed that it performed successfully in the conducted experiments. Finally, we discussed the feasibility of the proposed scheduling scheme by evaluating the coverage and then showed that the scheduling scheme can be applied to closed space or room.
Kohei OGAWA Masahiro MORIKURA Koji YAMAMOTO Tomoyuki SUGIHARA
As a promising wireless access standard for machine-to-machine (M2M) networks, the IEEE 802.11 task group ah has been discussing a new standard which is based on the wireless local area network (WLAN) standard. This new standard will support an enormous number of stations (STAs) such as 6,000 STAs. To mitigate degradation of the throughput and delay performance in WLANs that employ a carrier sense multiple access with collision avoidance (CSMA/CA) protocol, this paper proposes a virtual grouping method which exploits the random arbitration interframe space number scheme. This method complies with the CSMA/CA protocol, which employs distributed medium access control. Moreover, power saving is another important issue for M2M networks, where most STAs are operated by primary or secondary batteries. This paper proposes a new power saving method for the IEEE 802.11ah based M2M network employing the proposed virtual grouping method. With the proposed virtual grouping and power saving methods, the STAs can save their power by as much as 90% and maintain good throughput and delay performance.
Masafumi HASHIMOTO Go HASEGAWA Masayuki MURATA
To raise the energy efficiency of wireless clients, it is important to sleep in idle periods. When multiple network applications are running concurrently on a single wireless client, packets of each application are sent and received independently, but multiplexed at MAC-level. This uncoordinated behavior makes it difficult to control of sleep timing. In addition, frequent state transitions between active and sleep modes consume non-negligible energy. In this paper, we propose a transport-layer approach that resolves this problem and so reduces energy consumed by multiple TCP flows on a wireless LAN (WLAN) client. The proposed method, called SCTP tunneling, has two key features: flow aggregation and burst transmission. It aggregates multiple TCP flows into a single SCTP association between a wireless client and an access point to control packet transmission and reception timing. Furthermore, to improve the sleep efficiency, SCTP tunneling reduces the number of state transitions by handling multiple packets in a bursty fashion. In this study, we construct a mathematical model of the energy consumed by SCTP tunneling to assess its energy efficiency. Through numerical examples, we show that the proposed method can reduce energy consumption by up to 69%.
Tomoki MURAKAMI Koichi ISHIHARA Riichi KUDO Yusuke ASAI Takeo ICHIKAWA Masato MIZOGUCHI
The implementation and experimental evaluations of distributed zero-forcing beamforming (DZFBF) for downlink multi-user multiple-input multiple-output (DL MU-MIMO) systems are presented. In DZFBF, multiple access points (APs) transmit to own desired stations (STAs) at the same time and using the same frequency channel while mitigating inter-cell interference. To clarify the performance and feasibility of DZFBF, we develop a real-time transmission testbed that includes two APs and four STAs; all are implemented using field programmable gate array. For real-time transmission, we also implement a simple weight generation process based on ZF weight using channel state information which is fed back from STAs; it is an extension of the weight generation approach used in DL MU-MIMO systems. By using our testbed, we demonstrate the real-time transmission performance in actual indoor multi-cell environments. These results indicate that DL DZFBF is more effective than DL MU-MIMO with time division multiple access.
Kohei HANADA Koji YAMAMOTO Masahiro MORIKURA Koichi ISHIHARA Riichi KUDO
As the demand for high-throughput communications in wireless LANs (WLAN) increases, the need for expanding channel bandwidth also increases. However, the use of wider band channels results in a decrease in the number of available channels because the total available bandwidth for WLAN is limited. Therefore, if multiple access points (APs) are in proximity and the cells overlap, it is difficult for each AP to use an orthogonal channel and competition increases between APs using the same channel. Coordination of APs is one promising approach; however, it is impractical to control all APs in WLAN systems. To cope with this problem, we proposed to analyze throughput performances of a multibandwidth channel selection by the coordinating APs at Nash equilibria, which can be considered as operating points for independent channel selection by APs. To clarify the effect of coordinating APs, we assume a simple scenario where the cells of three or more APs overlap, and each AP can select multibandwidth channels to maximize their own throughput. Through game-theoretic analysis, we find that the coordinated APs are able to select channels more effectively than if each AP independently selects channels. Consequently, the total throughput of the coordinated APs at Nash equilibria is significantly improved.
Seung-Man CHUN Seung-Mu LEE Jae-Wook NAH Jong-Tae PARK
Precise localization of the Wi-Fi Access Point (AP) is becoming increasingly important with the rise of diverse location-based and smart phone-based services. In this article, we propose a new method for precise Wi-Fi AP localization using GPS information of a smart phone. The idea is that the possible area of Wi-Fi AP location, termed AP_Area, is first determined by measuring GPS information and the received signal strength of smart phones. As the number of measurements from users' smart phones increases, the AP_Area is successively narrowed down to the true AP location. Simulation shows the proposed algorithm can detect the Wi-Fi AP's localization within 5 m (probability exceeds 90%).
Atsushi TAKAHASHI Nobuyoshi KOMURO Shiro SAKATA Shigeo SHIODA Tutomu MURASE
In wireless single-hop networks, IEEE 802.11e Enhanced Distributed Channel Access (EDCA) is the standard for Quality of Service (QoS) control. However, it is necessary for controlling QoS to modify the currently used IEEE 802.11 Distributed Coordination Function (DCF)-compliant terminals as well as Access Points (APs). In addition, it is necessary to modify the parameter of IEEE 802.11e EDCA when the traffic is heavy. This paper proposes a novel scheme to guarantee QoS of high-priority flow with Receiving Opportunity Control in MAC Frame (ROC) employed adaptive flow control in wireless multi-hop network. In the proposed scheme, the edge APs which are directly connected to user terminals estimate the network capacity, and calculate appropriate ACK prevention probability against low-priority flow according to traffic load. Simulation evaluation results show that the proposed scheme guarantees QoS.
Janne J. LEHTOMAKI Risto VUOHTONIEMI Kenta UMEBAYASHI Juha-Pekka MAKELA
Recently, there has been growing interest in opportunistically utilizing the 2.4 GHz ISM-band. Numerous spectrum occupancy measurements covering the ISM-band have been performed to analyze the spectrum usage. However, in these campaigns the verification of the correctness of the obtained occupancy values for the highly dynamic ISM-band has not been presented. In this paper, we propose and verify channel occupancy rate (COR) estimation utilizing energy detection mechanism with a novel adaptive energy detection threshold setting method. The results are compared with the true reference COR values. Several different types of verification measurements showed that our setup can estimate the COR values of 802.11 traffic well, with negligible overestimation. The results from real-time real-life measurements also confirm that the proposed adaptive threshold setting method enables accurate thresholds even in the situations where multiple interferers are present in the received signal.